
Questions (22) to (25) considers the following system:

where the plant $G(s) = \frac{G_o}{1 + \frac{s}{Q\omega_o} + \left(\frac{s}{\omega_o}\right)^2}$, $G_o = 50$, Q = 1.66, $\omega_o = 2\pi(1000)$ and $H(s) = \frac{1}{2}$.

Transfer function $G_c(s)$ represents the compensator. (Hint: $10^{\frac{1}{(2+1.66)}} = 2$)

22. The uncompensated loop gain (i.e. $G_c(s) = 1$) has a unity gain frequency closest to

- a. 2 kHz
- b. 3 Khz
- c. 4 Khz
- d. 5 khz
- e. 6 kHz

23. The phase margin of the uncompensated system is closest to

- a. 60 degrees
- b. 40 degrees
- c. 20 degrees
- d. 0 degrees
- e. -20 degrees
- 24. We would like to design a proportional compensator with gain K_p . What should K_p be to achieve a unity gain bandwidth of 1.5 kHz.
 - a. $K_p = 0.03$
 - b. $K_p = 0.05$
 - c. $K_p = 0.07$
 - d. $K_p = 0.09$
 - e. $K_p = 0.10$

25. The phase margin achieved by the proportional compensator design of Question 24 is closest to:

- a. 30 degrees
- b. 50 degrees
- c. 70 degrees
- d. 90 degrees